ADIOS User’s Manual

November 2008

Prepared by

C.Jin
S. Klasky
S. Hodson

Oak Ridge National Laboratory

J. Lofstead
F. Zheng
M. Wolf

Georgia Tech

R. Ross

Argonne National Laboratory

ORNL/TM-2008/###

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE)
Information Bridge:

Web site: http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the following
source:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161

Telephone: 703-605-6000 (1-800-553-6847)

TDD: 703-487-4639

Fax: 703-605-6900

E-mail: info@ntis.fedworld.gov

Web site: http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE)
representatives, and International Nuclear Information System (INIS) representatives from the following source:

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: 865-576-8401

Fax: 865-576-5728

E-mail: reports @adonis.osti.gov

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

ADIOS USER’S MANUAL

Prepared for the
Office of xxx
Xxxx Program
U.S. Department of Energy

C. Jin, S. Hodson, S. Klasky,
J. Lofstead, F. Zheng, M. Wolf, R. Ross

November 2008

Prepared by

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6070
managed by
UT-BATTELLE, LLC
for the
U.S. DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

ORNL/TM-2008/###

Contents

il

ADIOS USer’s MaAnUAL........cccererrerremsersssssssssssssssssssssssssasssssssssssssssssssssssssssasssssnsssssassasssssssesses i
ADIOS User’s Manual........coceevrerrersersessersessasssssssssnes Error! Bookmark not defined.
ACKNOWIEAGMENLES.....cciirrmsermsmssssmssssssmsssassssssssssssssnssssssnnes viii
0910 o0 1o 11 Tt 0) LR 1

1.1 0= T 1
1.2 WAL IS ADIOS? et sss bbb sss sttt b s ss bbb b bs st 1
1.3 The Basic ADIOS Group CONCEPT .mmminsrsessssssrssesssnes 1
1.4 Other Interesting Features of ADIOS ... sssssssssssaseens 1
1.5 ADIOS 2.0 GOAILS ettt b s s s bbb bbb bbb aen 2

| 9T = 11 B X 0] o R 3

2.1 ODBtAINING ADIOS . s s e 3
2.2 Q00 Tod 540 B's 1] =1 1 =Tt o) o 0P 3
2.2.1 LINUX CIUSTET wotrteetrecetrerstresstres et et st sessssessssessssessssessssessssessssessssessssessssssssssssssessssesssssssssssssenns 3
2.2.2 CTay XT4 st ssss s sessssss s st sessss s s ssssssss st st sssssnssnses 3

2.3 ADIOS DEPENAENICIES ovuvueerirreerssesssessessessess 4
2.3.1 Mini-xml parser (FeQUITEA) ...crerenreessssssesnessessssssessessess 4
2.3.2 PHDFS (OPtiONal) s ssess 4
2.3.3 PNetCDF (OPtioNal) . sessess 4
2.3.4 MPI and MPI-I0 (FeqUITEA) .ocereerrnererrersesesssrssssessessssssessessess 4
2.3.5 Serial HDF5 and NetCDF (0ptional)...nmiensnssssesssssssssssssssssessssssssssessens 4

2.4 FUIL INSTAllAtiON cucuccrcctecctecstes sttt es st e esas s essssessssessssessssessssesasseens 4
ADIOS USEE APIS.....cccececrrecrresrsssrsssssssssssmsssssssssssssassssssssnssssmssssssnsmssssmsssassssasssnssssnsens 6

3.1 High-Level API DeSCriPLiON s sssssssssssssssssssssssssssssssssaseens 6

1S 7% 5 T 01w oo Yo 10 (o (e) PP 6
3.1.2 ADIOS-required fUNCHONS. ..o ssess 6
3.1.3 NonblocKing fUNCHIONS .. sssssssssssssssssssssssssssess 9

1S 0 7 S O 1l Y=3 ol 101 0 Lot 1o) o 10U PP 10
3.1.5 Create a first ADIOS PrOZraml....ocrsrsmeneeressssnsesssssssssssssssssssssssssssssssssssssasssssssssssssess 10

4 XML Config File FOrmatcccommsmmmsmsmmsmsmsmssssmssas 12
4.1 L0 17=) 74 =P 12
4.2 AAIOS-EIOUP curitrrerererseserssessssssesses e s s bbb s s bR bR bR 13
2407705 NN D 1Yol =) - L 1) o A0 13
£ g =Y o (=T3P 13
27/ TR ¥ w o | o]0 o <3P 14
.24 GWTIEE /ST Currrrerrerrersesssssssssssss s s st s s s sttt sesasssnssns 15
4.2.5 GlODAL GITaYS..eeseersrssesessesssessesssssssssssssssss s sssasssssssasssssesns 15
4.2.6 TIME-INAEX.u it sssse s st s s s ses st ses s s s s s ss s s sesassesnssesnsssnsanen 16
20 AN 1Yol =) - L [) o A0 16
27/ TN " =Y o o Vo Yo 30 - o 17

4.3 BUSfer SPeCifiCation ...t ssssssssssssssssssssssssssnns 17
200 700 SN D Yol = = L 1) o A0 17

4.4 AN EXaMPLE XML file..cuniuiereerierirnessississsssssssisssens 18

5 Transport Methods.....ms—————————————- 19
5.1 SYNChronous MEthOAS ... s ssasesns 19

70 00 1 U) PN 19

5012 POSIKureeteteeiseesse st ssses s s ss e s s es s bbb 19
513 MPI-LO ieeteeeseetseese et sssessssess e ssses bbb es st s ss bbb R bbb 19
5.104 MPI-CIO coirteeeceeeteeeeees e ssseesssesssse s ssss s ss e sss st s ssse bbb s bbb sssansssens 21

5. 15 PHD S ettt b bbb bR R s 21
5,106 PNELCDF ..eeeeereteeet st st s s ss e sss s sss s ss bbb s bbb 22
5.1.7 Other MEthOAS ..ttt sssssasssssssassssess 22

5.2 ASyNchronous MethodS.. . sssssess 22
52,1 MPI-ATD cieeeeeeteeeeees e ssssesssesssse s s sss s sas st s ss bbb bbb 22
5.2.2 DAAT AP i ssssssssssssssssssssssssssss st sssssssssssss st s st sesssssssssssssasssssssssssnnss 23
5.2.3 Decoupled and Asynchronous Remote Transfers (DART)ccccommmenrererssenseenens 23

6 BP file format......ccovnnnninnsnssssssss s ————————— 25
6.1 INETOAUCTION ottt s s s s st 25
6.2 FOOTET ottt et s s R R R R R 25
6.2.1 VETSION et ses s s s s s e 26
6.2.2 OffSEtS Of INAICES vt st ssasssess 26
6.2.3 INAICES ettt sssss s s s s e s 26

6.3 PrOCESS GIOUPS .ecureurereieeesesessessesssssssessessesssssss s s sss s sssssnsssasesssns 28
6.3.1 PG REAUET sttt st s e 29
6.3.2 VATS LIS ettt s s s 30
6.3.3 ATEFIDULES LISttt s s s 30

7 115 1 L3 U 32
7.1 AAIOS_IN Tt s s s s s s 32
7.2 DPDAUIMP oottt bbbt 32

S T 010 1 7= 1) o 34
8.1 DP 25 oottt bR R R RS e bR R s 34
8.2 DD 2NCA coriiiiireieset st st s s 34
8.3 DD 2ASCI ctvueueeeerersessesssrsessee s s s 34
8.4 Parallel CONVETrter TOOLS ...uiereriesesssissesssss s ssssssssssssssssssesssssssssssssssssssssssssssssessssans 35

9 Group read/WrIite PrOCESS ..csmsmsmsmsmsssssssssssssssssssssssssssssssssssssassssssssssssssssassssesens 36
9.1 GWTIte/GTead /TEAM ..ottt s s 36
9.2 Add conditional EXPreSSION it ssssnens 37
9.3 Dependency in MaKefile ... inesesssssssssssesssans 37
10 CProgramming wWith ADIOS. ... 38
10.1 NON-ADIOS PrOgram...oorrrereseseeseesessessessesessess s sssssessessesessssssssssssssssessssssssssssssssssessessens 38
10.2 Construct an XML File ...t sssssssssssssssssssssssssssssssssasesnss 38
10.3 Generate .Ch file (S) st s s s ssasssssssssesess 39
10.4 Write to Separate Files for each Process (P writers, P files)coonnneinirneenneenens 39
10.4.1 POSIX ottt etmeessees et sessssee b ss s s s s R bR 40
10.4.2 MPI-TO ettt b s bbb s bbb bR 40

10.5 Writing to Shared Files (P writers, N files) ... sessssssssssesnees 41
10.6 Writing to Shared Files with CollectiVe I/0 ... ssseseenees 42
T10.7 GlODAI ATTAYS cuovereereereeneseesersessesssssssssssssssssssss s s sssssss st st sssssssessesssssssssssssasssssssssasesness 42
10.8 Writing Time-Index into @ Variable ... sssssssssssssesees 44
10.9 Reading the File ...t ssssssssssssssssssssssssssssssssessess 45
11 Advanced Programming with ADIOS.......ccccnmmmnmnmnmnsmmmssssssssssssssssses 47

11.1 Asynchronous I/O Programming Model.......coumennnensnsnsessssssssssesnees 47

12 Developer Manualccoiemmmmmmmssmssssmss 48
12.1 Create New Transport Methods ... ssssssssssssssssees 48
12.1.1 Add the new method macros in adios_transport_hooKks.hcceunererennes 48
12.1.2 Create adioS_aDC.C e sess s sess s 49
12.1.3 A walk-through eXample ... 50

12.2 Profiling the Application and ADIOS ... 56
12.2.1 Use profiling API in SOUICE COAE ..mmmmnenmninnessisssssessssssssssssssssssssssssssssssesssens 56

To compile the code, one should link the code with the -ladios_timing -
T (020 010 10) o 59
12.2.2 USE WIAPPET LIDTATY .ot sesssessss s sssens 59
13 FAQs 61

131 XML EQItINE eeereereeeneeeseesssessseesssessssesssssssesssssesssssssessssessssesssssssssssssssssssssssssessssassssssssessssssssssssans 61
13.2 PrOZramIMNG ..o oscereeresereesersessersessessesesss e ssesses st sssssss s sssssessesssssssssssesssessesssns 61
13.3 DEDUZEZING vttt sssss s s b s st s s s s 61
13.4 Method SWItCHING o s s s asesees 61
B 23 () o) 1 Lo T 62
15 APPENAIX cvvererirsesmsmssssmsssasssssssssnsssassnssssssnnsss 63

Figures

Fig.1. ADIOS programming eXampPle.corereenmenmenssnsnssesessesssssssssssssssssssssssessessesns 11
Fig. 2. Example XML cONfiguration.cesssssssssssssssssssssssssssssesssssns 13
Fig. 3. Example XML file for time alloCation.......cenenennensenenesesssessssssesssssesssenns 18
Fig. 4. Server-friendly metadata approach: offset the create/open

TN TN, oottt 20
Fig. 5. DataTap arChiteCtUTE. ... ssssssssssssssssssssssessesns 23
Fig. 6. BP file STIUCLUTE. ..ot ssss s sssssss st ssssss s sssssssssssssssssssnsans 25
Fig. 7. Group iNAeX table. ...t sssssssssessesns 27
Fig. 8. Vars INAeX table. ... sssssssssssssssssssssssssssssssssssssssesesns 28
Fig. 9. Process Group SIIUCLUTE. ... sessessssssessesssssssessssssssssessssssssssesssssssesseses 29
Fig. 10. Attribute entry SEIUCLUTE. ...oecevcereerereseeressesssessess s sssssessessessssssssssssssssssssessessessesns 31
Fig. 11 bpdump SNAaPSHOt. ...t ses s ssessesns 33
Fig. 12. Example of a user’s original program...........snsns 38
Fig. 13. Example config.Xml file.ccmmnnennmnnisnsssssssssssssssssssssssssssssssssssesssesns 39
Fig. 14. Example gwrite_temperature.ch file. ... 39
Fig. 15. Example adios P2P Program.ssssssssssssssssssssessssseens 40
Fig. 16. Example ADIOS P2N Program......cooreesmensensesssssssesssessesssssssssssssssssssssssessessesns 42
Fig. 17. Example of how to edit an XML file.coounromenmenennenensnensesnsessssssesssesesssenns 43
Fig. 18. Example of how to edit a python script to generate the

Q=T 16 L) Yol)] O PP STTTTTON 43
Fig. 19. Converted reSults file..... s ssssssssssssssssssssssnns 44
Fig. 20. Example of a file with a time variable added.........cccurnrnenrernnernerneensinseesnenne 44
Fig. 21. Example of C routines integrated with ADIOS APIs for

gread_temMPeErature.Ch.... et sseasnanes 46
Fig. 22. Example of a generated gread_temperature.ch file.......nerrnconienneennenn. 46
Fig. 23. Example of asynchronous programming. ... 47

vi

Abbreviations
ADIOS

API

DART
GTC
HPC
1/0
MDS
MPI
NCCS
ORNL
0S
PG
POSIX
RDMA
XML

Adaptive Input/Output System

application program interface, a set of routines,
protocols, and tools for building software applications.
A good API makes it easier to develop a program by
providing all the building blocks. A programmer then
puts the blocks together.

Most operating environments, such as MS-Windows
provide an API so that programmers can write
applications consistent with the operating
environment. Although APIs are designed for
programmers, they are ultimately good for users
because they guarantee that all programs using a
common API will have similar interfaces. This makes it
easier for users to learn new programs.

Decoupled and Asynchronous Remote Transfers
Gyrokinetic Turbulence Code
high-performance computing

input/output

metadata server

Message-Passing Interface

National Center for Computational Sciences
Oak Ridge National Laboratory

operating system

process group

Portable Operating System Interface
remote direct memory access

Extensible Markup Language

vii

Acknowledgments

The Adaptive Input/Output (I/0) system (ADIOS) is a joint product of the
National Center of Computational Sciences (NCCS) at Oak Ridge National
Laboratory (ORNL) and the Center for Experimental Research in Computer
Systems at the Georgia Institute of Technology. This work is being led by Scott
Klasky (ORNL); Jay Lofstead (Georgia Tech, funded from Sandia Labs) is the main
contributor. ADIOS has greatly benefited from the efforts of the following ORNL
staff: Steve Hodson, who gave tremendous input and guidance; Chen Jin, who
integrated ADIOS routines into multiple scientific applications; and Norbert
Podhorszki, who integrated ADIOS with the Kepler workflow system. ADIOS also
benefited from the efforts of the Georgia Tech team, including Prof. Karsten
Schwan, Prof. Matt Wolf, Hassan Abbasi, and Fang Zheng. Wei Keng Liao,
Northwestern University, and Wang Di, SUN, have also been invaluable in our
coding efforts of ADIOS, writing several important . Essentially, ADIOS is
componentization of /0 transport methods. Among the suite of transport
methods, Decoupled and Asynchronous Remote Transfers (DART) was developed
by Prof. Manish Parashar and his student Ciprian Docan of Rutgers University.

Without a scientific application, ADIOS would not have come this far. Special
thanks go to Stephane Ethier at the Princeton Plasma Physics Laboratory (GTS);
Researcher Yong Xiao and Prof. Zhihong Lin from the University of California,
Irvine (GTC); Julian Cummings at the California Institute of Technology; and
Seung-Hoe and Prof. C. S. Chang at New York University (XGC).

The manual was drafted by Chen Jin with substantive input from Steve
Hodson, Scott Klasky, Jay Lofstead, Fang Zheng, Rob Ross, and Matt Wolf.

This project is sponsored by ORNL, Georgia Tech, The Scientific Data
Management Center (SDM) at Lawrence Berkeley National Laboratory, and
the U.S. Department of Defense.

ADIOS contributors
ANL: Rob Ross

Georgia Tech: Hasan Abbasi, Jay Lofstead, Karsten Schwan, Fang Zheng, Matthew
Wolf

NCSU: Xiaosong Ma

Northwestern: Alok Choudhary, Wei Keng Liao

ORNL: Steve Hodson, Chen Jin, Scott Klasky, Norbert Podhorszki, Steve Poole
Rutgers: Ciprian Docan, Manish Parashar

SUN: Wang Di

viii

Introduction

1.1 Goals

As computational power has increased dramatically with the increase in the
number of processors, input/output (I0) performance has become one of the
most significant bottlenecks in today’s high-performance computing (HPC)
applications. With this in mind, ORNL and the Georgia Institute of Technology’s
Center for Experimental Research in Computer Systems have teamed together to
design the Adaptive 1/0 System (ADIOS) as a componentization of the 10 layer,
which is scalable, portable, and efficient on different clusters or supercomputer
platforms. We are also providing easy-to-use, high-level application program
interfaces (APIs) so that application scientists can easily adapt the ADIOS library
and produce science without diving too deeply into computer configuration and
skills.

1.2 What s ADIOS?

ADIOS is a state-of-the-art componentization of the 10 system that has
demonstrated impressive 10 performance results on leadership class machines
and clusters; sometimes showing an improvement of more than 1000 times over
well known parallel file formats. ADIOS is essentially an /O componentization of
different I/0 transport methods. This feature allows flexibility for application
scientists to adopt the best [/0 method for different computer infrastructures
with very little modification of their scientific applications. ADIOS has a suite of
simple, easy-to-use APIs. Instead of being provided as the arguments of APIs, all
the required metadata are stored in an external Extensible Markup Language
(XML) configuration file, which is readable, editable, and portable for most
machines.

1.3 The Basic ADIOS Group Concept

The ADIOS “group” is a concept in which input variables are tagged according to
the functionality of their respective output files. For example, a common scientific
application has checkpoint files prefixed with restart and monitoring files
prefixed with diagnostics. In the XML configuration file, the user can define
two separate groups with tag names of adios-group as “restart” and “diagnostic.”
Each group contains a set of variables and attributes that need to be written into
their respective output files. Each group can choose to have different 1/0
transport methods, which can be optimal for their [/0 patterns.

1.4 Other Interesting Features of ADIOS

ADIOS contains a new self-describing file format, BP. The BP file format was
specifically designed to support delayed consistency, lightweight data
characterization, and resilience. ADIOS also contains python scripts that allow
users to easily write entire “groups” with the inclusion of one include statement
inside their Fortran/C code. Another interesting feature of ADIOS is that it allow

users to use multiple /0 methods for a single group. This is especially useful if
users want to write data out to the file system, simultaneously capturing the
metadata in a database method, and visualizing with a visualization method.

1.5 ADIOS 2.0 Goals

One of the main goals for ADIOS 2.0 is to include subarray reads in the global
domain and to produce faster reads via indexing methods. Another goal is to
provide more advanced data types via XML in ADIOS so that it will be compatible
with F90/c/C++ structures/objects. We will also be working on the IBM BlueGene
P computer to provide full support for current and future architectures..

We will also work on the following advanced topics for ADIOS 2.0:

* Alink to an external database for provenance recording.

* Autonomics through a feedback mechanism from the file system to
optimize 1/0 performance. For instance, ADIOS can be adaptively changed
from a synchronous to an asynchronous method or deciding when to write
restart to improve 1/0 performance.

* Astaging area for data querying, analysis, and in situ visualization.

Installation

1.6 Obtaining ADIOS
The ADIOS library can be checked out from the SVN repository, which requires a
user name and a password. The check out command is:

svn co https://svn.ccs.ornl.gov/svn-ewok/ADIOS/trunk

Or from the following website http://www.adios-api.org:

1.7 Quick Installation
To get started with ADIOS, the following steps can be used to configure, build,
test, and install the ADIOS library, header files, and support programs.

cd trunk/
./runconf
make

make install

Note: ./runconf is the batch script containing a series of commands that set
appropriate environment variables and configure options.

1.7.1 Linux cluster
The following is a snapshot of the batch scripts on Ewok, an Intel-based
Infiniband cluster running Linux:

export CC=mpicc

./configure --preifix = <location for ADIOS software installation>
--enable-dependency-tracking
--with-mxml=<location of mini-xml installation>
--with-hdf5=<location of HDF5 installation>
--with-netcdf=<location of netCDF installation>

1.7.2 Cray XT4

To install ADIOS on a Cray XT4, the right compiler commands and configure flags
need to be set. The required commands for ADIOS installation on Jaguar are as
follows:

export CC=cc

export FC=ftn

./configure --preifix = <location for ADIOS software installation>
--enable-dependency-tracking
--with-mxml=<location of mini-xml installation>
--with-hdf5=<location of HDF5 installation>
--with-netcdf=<location of netCDF installation>

1.8 ADIOS Dependencies

1.8.1 Mini-xml parser (required)

The mini-xml library is used to parse XML configuration files. Therefore, the
ADIOS library must have it defined in the configure flag. Otherwise, the library
cannot be compiled

1.8.2 PHDF5 (optional)

If there is no HDF5 installed on the system, the offline serial version of the bp2h5
converter cannot be built and installed. If the Parallel HDF5 (PHDF5) library does
not exist, PHDF5 will not be used as a transport method in ADIOS.

1.8.3 PnetCDF (optional)
In the same way as HDF5/PHDFS5, the bpZ2ncd converter will not be built or
installed if NetCDF installation path is not provided in the configure options.

1.8.4 MPI and MPI-IO (required)

Currently, most large-scale scientific applications rely on the Message Passing
Interface (MPI) library to implement communication among processes. For
instance, when the Portable Operating System Interface (POSIX) is used as
transport method, the rank of each processor in the same communication group,
which needs to be retrieved by the certain MPI APIs, is commonly used in
defining the output files.

MPI-IO can also be considered the most generic 1/0 library on large-scale
platforms. It is very difficult to find any platform without MPI or MPI-IO installed.
Therefore, MPI and MPI-IO0 is required for the ADIOS 1.0 release.

1.8.5 Serial HDF5 and NetCDF (optional)

The HDF5 library and the bp2ncd converter need to be installed to build the
serial version bp2h5 converter. Otherwise, the converter will not be built. We will
continue to work on the parallelized converters, which will require PHDF5 and
PnetCDF also.

1.9 Full Installation
The following list is the complete set of options that can be used with configure to
build ADIOS and its support utilities:

--help print the usage of ./configure command
--with-tags [=TAGS] include additional configurations [automatic]
--with-mxml=DIR Location of Mini-XML library

--with-gengetopt=<path> Location of gengetopt
--with-hdf5=<location of HDF5 installation>
--with-hdf5-incdir=<location of HDF5 includes>
--with-hdf5-1libdir=<location of HDF5 library>
--with-netcdf=<location of NetCDF installation>
--with-netcdf-incdir=<location of NetCDF includes>
--with-netcdf-libdir=<location of NetCDF library>

Some influential environment variables are lists below:

ccC
CFLAGS
LDFLAGS

CPPFLAGS
have

CPP

CXX
CXXFLAGS
FC
FCFLAGS
CXXCPP
F77
FFLAGS
MPICC
MPIFC

C compiler command
C compiler flags

linker flags, e.g. -L<lib dir> if you have libraries in a

nonstandard directory <lib dir>
C/C++ preprocessor flags, e.g. -I<include dir> if you

headers in a nonstandard directory <include dir>
C preprocessor

C++ compiler command

C++ compiler flags

Fortran compiler command
Fortran compiler flags

C++ preprocessor

Fortran 77 compiler command
Fortran 77 compiler flags
MPI C compiler command

MPI Fortran compiler command

ADIOS User APIs

As mentioned earlier, ADIOS is comprised of two parts: the XML configuration file
and APIs. In this section, we will explain the functionality of each API in detail and
how they are applied in the program.

1.10 High-Level API Description

1.10.1 Introduction

ADIOS provides both Fortran and C routines. All ADIOS routines and constants in
both C and Fortran begin with the prefix “adios_” to avoid name collisions. For the
remainder of this section, only the C versions of ADIOS APIs are presented. The
primary differences between the C and Fortran routines are as follows:

Error Codes are returned in a separate argument for Fortran as opposed to the
return value for C routines.

A unique feature of ADIOS is group implementation, which is constituted by a list
of variables and associated with individual transport methods. This flexibility
allows the applications to make the best use of the file system according to its
own different I/0 patterns.

1.10.2 ADIOS-required functions

This section contains the basic functions needed to integrate ADIOS into scientific
applications. ADIOS is a lightweight [/0 library, and there are only seven required
functions from which users can write scalable, portable programs with flexible
[/0 implementation on supported platforms:

adios_init—initialize ADIOS and load the configuration file
adios_open—open the group associated with the file
adios_group_size—pass the group size to allocate the memory
adios_write—write the data either to internal buffer or disk
adios_read—associate the buffer space for data read into
adios_close—commit write/read operation and close the data
adios_finalize—terminate ADIOS

You can add functions to your working knowledge incrementally without having
to learn everything at once. For example, you can achieve better 1/0 performance
on some platforms by simply adding the asynchronous functions
adios_start_calculation, adios_end_calculation, and adios_end_iteration to your
repertoire. These functions will be detailed below in addition to the seven
indispensable functions.

The following provides the detailed descriptions of required APIs when users
apply ADIOS in the Fortran or C applications.

1.10.2.1 adios_init

This API is required only once in the program. It loads XML configuration file and
establishes the execution environment. Before any ADIOS operation starts,
adios init is required to be called to create internal representations of
various data types and to define the transport methods used for writing.

int adios_init (const char *xml fname)
Input:
xml fname - string containing the name of the XML configuration file

1.10.2.2 adios_open

This API is called whenever a new output file is opened. Adios_open,
corresponding to fopen (not surprisingly), opens an adios-group given by
group name and associates it with one or a list of transport methods, which can
be identified in future operations by the File structure whose pointer is returned
as £d_p. The group name should match the one defined in the XML file. The I/0
handle £d p prepares the data types for the subsequent calls to write data using
the io_handle. The third argument , file name, is a string representing the
name of the file. As the last argument, mode is a string containing a file access
mode. It can be any of these three mode specifiers: “r,” “w,” or “a.” Currently,
ADIOS supports three access modes: “write or create if file does not exist,” “read,”
and “append file.” The call opens the file only if no coordination is needed among
processes for transport methods that the users have chosen for this adios_group,
such as POSIX method. Otherwise, the actual file will be opened in
adios_group_size based on the provided argument comm, which will be examined
in Sect. 4.1.2.3.

int adios_open (int64_t * £d p, const char * group name
,constchar * file name, const char * mode)
Input:
fd p—pointer to the internal file structure
group name—string containing the name of the group
file name—string containing the name of the file to be opened
mode—string containing a file access mode.

1.10.2.3 adios_group_size

This function passes the size of the group to the internal ADIOS transport
structure to facilitate the internal buffer management and to construct the group
index table. The first argument is the file handle. The second argument is the size
of the payload for the group opened in the adios_open routine. This value can be
calculated manually or through our python script. It does not affect read
operation because the size of the data can be retrieved from the file itself. The
third argument is the returned value for the total size of this group, including
payload size and the metadata overhead. The value can be used for performance
benchmarks, such as 1/0 speed. As the last argument, we pass the pointer of

coordination communicator down to the transport method layer in ADIOS. This
communicator is required in MPI-IO-based methods such as collective and
independent MPI-I0.

int adios_group_size (int64_t * fd p, uint64_t group size, uint64_t *
total size, void * comm)
Input:
fd p—pointer to the internal file structure
group size—size of data payload in bytes to be written out. If there is
an integer 2 x 3 array, the payload size is 4*2*3 (4 is the size of integer)
comm—communicator (handle) for multi-process coordination
output :
total size—the total sum of payload and overhead, which includes
name, data type, dimensions and other metadata)

1.10.2.4 adios_write

The adios_write routine submits a data element var for writing and associates it
with the given var name, which has been defined in the adios group opened by
adios_open. If the ADIOS buffer is big enough to hold all the data that the adios
group needs to write, this API only copies the data to buffer. Otherwise,
adios_write will write to disk without buffering. Currently, adios_write supports
only the address of the contiguous block of memory to be written. In the case of a
noncontiguous array comprising a series of subcontiguous memory blocks, var
should be given separately for each piece.

In the next XML section, we will further explain that var name is the value of
attribute “name” while var is the value of attribute “gwrite,” both of which are
defined in the corresponding <var> element inside adios_group in the XML file.

By default, it will be the same as the value of attribute “name” if “gwrite” is not
defined.

int adios_write (int64_t £d_p, const char * var name, void * var)
Input:
fd p—pointer to the internal file structure
var name—string containing the annotation name of scalar or vector
inthe file
var —the address of the data element defined need to be written

1.10.2.5 adios_read

Similar to adios_write, adios_read submits a buffer space var for reading a data
element into. This does NOT actually perform the read. Actual population of the
buffer space will happen on the call to adios_close. In other words, the value(s) of
var can only be utilized after adios_close is performed. Here, var name
corresponds to the value of attribute “gread” in the <var> element declaration
while var is mapped to the value of attribute “name.” By default, it will be as
same as the value of attribute “name” if “gread” is not defined.

int adios_read (int64_t £d p, const char * var name, uint64_t read size,
void * var
)
Input:
fd p - pointer to the internal file structure
var name - the name of variable recorded in the file
var - the address of variable defined in source code
read size - size in bytes of the data to be read in

1.10.2.6 adios_close

The adios_close routine commits the writing buffer to disk, closes the file, and
releases the handle. At that point, all of the data that have been copied during
adios_write will be sent as-is downstream. If the handle were opened for read, it
would fetch the data, parse it, and populate it into the provided buffers. This is
currently hard-coded to use posix I/0 calls.

int adios_close (int64_t * £d p);
Input:
fd p - pointer to the internal file structure

1.10.2.7 adios_finalize

The adios finalize routine releases all the resources allocated by ADIOS
and guarantees that all remaining ADIOS operations are finished before the code
exits. The ADIOS execution environment is terminated once the routine is
fulfilled. The proc id parameter provides users the opportunity to customize
special operation on proc_id—usually the ID of the head node.

int adios_finalize (int proc id)

Input:
proc_ id - the rank of the processes in the communicator or the user-
defined coordination variable

1.10.3 Nonblocking functions

1.10.3.1 adios_end_iteration

The adios_end_iteration provides the pacing indicator. Based on the entry in the
XML file, it will tell the transport method how much time has elapsed in a
transfer.

1.10.3.2 adios_start_ calculation/ adios_end_calculation

Together, adios_start_calculation and adios_end_calculation indicate to the
scientific code when nonblocking methods should focus on engaging their 1/0
communication efforts because the process is mainly performing intense, stand-
alone computation. Otherwise, the code is deemed likely to be communicating
heavily for computation coordination. Any attempts to write or read during those

times will negatively impact both the asynchronous I/0 performance and the
interprocess messaging.

1.10.4 Other function
One of our design goals is to keep ADIOS APIs as simple as possible. In addition to
the basic I/0 functions, we provide another routine listed below.

1.10.4.1 adios_get_write_buffer

The adios_get_write_buffer function returns the buffer space allocated from the
ADIOS buffer domain. In other words, instead of allocating memory from free
memory space, users can directly use the allocated ADIOS buffer area and thus
avoid copying memory from the ADIOS buffer to a user-defined buffer.

int adios_get_write_buffer (int64_t fd_p, const char * var_name, uint64_t * size,
void ** buffer)
Input:
fd_p - pointer to the internal File structure
var name - name of the variable that will be read
size - size of the buffer to request
output:
buffer - initial address of read-in buffer for storing the data of var name

1.10.5 Create a first ADIOS program

Figure 1 is a programming example that illustrates how to write a double-
precision array t and a double-precision array with size of NX into file called
“test.bp,” which is organized in BP, our native tagged binary file format. This
format allows users to include rich metadata associated with the block of binary
data as well the indexing mechanism for different blocks of data (see Chap. 5).

/*example of parallel MPI write into a single file */

#include <stdio.h> // ADIOS header file required
#include ”adios.h”
int main (int argc, char *argv[])
{
int 1, rank, NX;
double t [NX];
/I ADIOS variables declaration
int64 t handle;
uint 64 total size;
MPI_Comm comm = MPI COMM_WORLD;

MPI_Init (&arge, &argv);
MPI_Comm_rank (comm, &rank);

10

// data initialization
for (1=0; iI<NX; i++)
t[i]=1* (rank+1) + 0.1;

/' ADIOS routines

adios_init (“config.xml”);

adios_open (&handle, “temperature”, “data.bp”, “w”);
adios_group_size (handle, 4, total size, &comm);
adios_write (handle, "NX”, &NX);

adios_write (handle, “temperature”, t);

adios_close (handle);

adios_finalize (rank);

MPI Finalize();
return 0;

Fig. 1. ADIOS programming example.

11

XML Config File Format

1.11 Overview

XML is designed to allow users store as much metadata as they can in an external
configuration file. Thus the scientific applications are less polluted and require
less effort to be verified again.

First, we present the XML template. Second, we demonstrate how to construct the
XML file from the user’s own source code. Third, we note how to troubleshoot
and debug the errors in the file.

Abstracting metadata, data type, and dimensions from the source code into an
XML file gives users more flexibility to annotate the arrays or variables and
centralizes the description of all the data structures, which in return, allows /0
componentization for different implementation of transport methods. By
cataloguing the data types externally, we have an additional documentation
source as well as a way to easily validate the write calls compared with the read
calls without having to decipher the data reorganization or selection code that
may be interspersed with the write calls. It is useful that the XML name attributes
are just strings. The only restrictions for their content are that if the item is to be
used in a dataset dimension, it must not contain commas and must contain at
least one non-numeric character. This is useful for incorporating expressions as
various array dimensions elements. Figure 2 illustrates the corresponding XML
configuration for the example we demonstrated in Fig. 1.

At a minimum, a configuration document must declare an adios-config
element. It serves as a container for other elements; as such, it MUST be used as
the root element. The expected children in any order would be adios-group,
method, and buffer. The main elements of the xml file format are of the format

<element-name attrl attr2 ...>

<adios-config>
<adios-group>
<var />

</adios-group>

<method>

<buffer>
</adios-config>

12

Fig. 2. Example XML configuration.

1.12 adios-group

The adios-group element represents a container for a list of variables that share
the common [/0 pattern as stated in the basic concepts of ADIOS in first chapter.
In this case, the group domain division logically corresponds to the different
functions of output in scientific applications, such as restart, diagnosis, and
snapshot. Depending on the different applications, adios-group can occur as many
times as is needed.

1.12.1 Declaration

The following example illustrates how to declare an adios group inside an XML
file. First we start with adios-group as our tag name, which is case insensitive. It
has an indispensable attribute called “name,” whose value is usually defined as a
descriptive string indicating the function of the group. In this case, the string is
called “restart,” because the files into which this group is written are used as
checkpoints. The second attribute “host-language” indicates the language in
which this group’s 1/0 operations are written. The value of attribute
“coordination-communicator” is used to coordinate the operations on a shared
file accessed by a multiple process in the same communicator domain.
“Coordination-var” provides the ability to use the user-defined variable, for
example mype, rather than an MPI communicator for file coordination.

<adios-group name="restart”
host-language="C"
coordination-communicator="comm”
coordination-var="mype”
time-index="iter” />

Required:

e name—containing a descriptive string to name the group

Optional:
* host-language—language in which the source code for group is written
e coordination-communicator—MPI-10 writing to a shared file

e coordination-var—coordination variables for non-MPI methods, such as
Datatap method

e time-index—

1.12.2 Variables
The nested variable element “var” for adios_group, which can be either an array
or a primitive data type, is determined by the dimension attribute provided.

1.12.2.1 Declaration
The following is an example showing how to define a variable in the XML file.

13

)

<var name="z-plane ion particles’
gwrite="zion”
gread="zion_read”
type="adios_real”
dimensions="7,mimax”
read="yes” />

1.12.2.2 Attribute list
The attributes associated with var element as follows:

Required:
e name - the string name of variable stored in the output file
* type - the data type of the variable

Optional:

 gwrite - the value will be used in the python scripts to generate adios_write
routines; the default value will be the same as attribute name if
gwrite is not defined.

e gread - the value will be used in the python scripts to generate adios_read
routines’ the default value will be the same as attribute name if
gread is not defined.

e path - HDF-5-style path for the element or path to the HDF-5 group or data
item to which this attribute is attached. The default value is “/”.

e dimensions - a comma-separated list of numbers and/or names that
correspond to integer var elements determine the size of this
item. If not specified, the variable is scalar.

e read - value is either yes or no; in the case of no, the adios_read routine will
not be generated for this var entry. If undefined, the default value will
be yes.

1.12.3 Attributes

The attribute element for adios_group provides the users with the ability to
specify more descriptive information about the variables or group. The attributes
can be defined in both static or dynamic fashions.

1.12.3.1 Declaration
The static type of attributes can be defined as follows:

<attribute name="experimental date”
path="/zion”
value="Sep-19-2008”

14

type="adios_real” />

If an attribute has dynamic value that is determined by the runtime execution of
the program, it can be specified as follows:
<attribute name="experimental date”

path="/zion”

var="time” />

where var “time” need to be defined in the same adios-group.

1.12.3.2 Attribute list
Required:

e name - name of the attribute
e path - hierarchical path inside the file for the attribute

e value - attribute has static value of the attribute, mutually exclusive with the
attribute var

e type - string or numeric type, paired with attribute value, in other words,,
mutually exclusive with the attribute var also

e var - attribute has dynamic value that is defined as a variable in var
1.12.4 Gwrite/src

1.12.4.1 The element <Gwrite/src> is unlike <var> or <attribute>, which are
parsed and stored in the internal file structure in ADIOS. The element <gwrite>
only dffects the execution of python scripts (see Chap. 10). Any content (usually
comments, conditional statements, or loop statements) in the value of attribute
“src” is copied identically into generated pre-processing files. Declaration
<gwrite src=" "/>

Required:

e src - any statement that needs to be added into the source code. This code
must will be inserted into the source code, and must be able to be compiled in
the host language, C or Fortran.

1.12.5 Global arrays

Global-bounds is an optional nested element for adios-group. It specifies the
global space and offsets within that space for the enclosed variable elements. In
the case of writing to a shared file, the global-bounds information is recorded in
BP file and can be interpreted by converters or other postprocessing tools or
used to write out either HDF5 or NetCDF files by using PHDF5 or the PnetCDF
method.

15

1.12.6 Time-index

ADIOS allows a dataset to be expanded in the space domain given by global
bounds and in time domain. It is very common for scientific applications to write
out a monitoring file at regular intervals. The file usually contains a group of time-
based variables that have undetermined dimensional value on the time axis.
ADIOS is Similar to NetCDF in that it accumulates the time-index in terms of the
number of records, which theoretically can be added to infinity.

If any of variables in an adios group are time based, they can be marked out by
adding the time-index variable as another dimension value.

1.12.6.1 Declaration

<global-bounds dimensions="nx_g, ny_g”
offsets="“nx_o,0" />

</global-bounds>

Required:
e dimensions - the dimension of global space
« offsets - the offset of the data set in global space

Any variables used in the global-bounds element for dimensions or offsets
declaration need to be defined in the same adios-group as either variables or
attributes.

For detailed global arrays use, see the examples illustrated in Sects. 10.7.,
Transport Methods.

Changing 1/0 Without Changing Source: The method element provides the hook
between the adios-group and the transport methods. The user employs a
different transport method simply by changing the method attribute of the
method element. If more than one method element is provided for a given group,
each element will be invoked in the order specified. This neatly gives triggering
opportunities for workflows. To trigger a workflow once the analysis data set has
been written to disk, the user makes two element entries for the analysis adios-
group. The first indicates how to write to disk, and the second performs the
trigger for the workflow system. No recompilation, relinking, or any other code
changes are required for any of these changes to the XML file.

1.12.7 Declaration

The transport element is used to specify the mapping of an /0 transport method,
including optional initialization parameters, to the respective adios-group. There
are two major attributes required for the method element:

<transport group="restart”
method="MPI"
priority="1"

16

iteration="100"/>
Required:

e group - corresponds to an adios-group specified earlier in the file.

e method - a string indicating a transport method to use with the associated
adios-group

Optional:

e priority- a numeric priority for the I/0 method to better schedule this write
with others that may be pending currently

e base-path-the root directory to use when writing to disk or similar
purposes

e iterations- a number of iterations between writes of this group used to
gauge how quickly this data should be evacuated from the
compute node

1.12.8 Methods list
As the componentization of the 10 substrate, ADIOS supports a list of transport
methods, described in Section O:

* NULL

* POSIX

* POSIXN2M (soon)
* MPI-IO

* MPI-CIO (soon)

* PHDF5

* PNetCDF (soon)
* MPI-AIO (soon)
* DATATAP (soon)

1.13 Buffer specification

The buffer element defines the attributes for internal buffer size and creating
time that apply to the whole application (Fig. 3). The attribute allocate-time is
identified as being either ‘now” or “oncall” to indicate when the buffer should be
allocated. An “oncall” attribute waits until the programmer decides that all
memory needed for calculation has been allocated. It then calls upon ADIOS to
allocate buffer. There are two alternative attributes for users to define the buffer
size: MB and free-memory-percentage.

1.13.1 Declaration
<buffer size-MB="100"
allocate-time="now” />

Required:

17

e size-MB - the user-defined size of buffer in megabytes. ADIOS can at most
allocate from compute nodes. It is exclusive with free-memory-
percentage.

« free-memory percentage - the user-defined percentage from 0 to 100% of
freememory available on the machine. It is exclusive with size-MB.

e allocate-time - indicates when the buffer should be allocated

1.14 An Example XML file

<adios-config host-language="C">
<adios-group name="temperature" coordination-communicator="comm">
<var name="NX" type="integer"/>
<var name="t" type="double" dimensions="NX"/>
<attribute name="recorded date" path="/" value="Sep 19, 2008" type="string"/>
</adios-group>
<method group=" temperature " method="MPI"/>

<buffer size-MB="1" allocate-time="now"/>

</adios-config>

Fig. 3. Example XML file for time allocation.

18

Transport methods

Because of the time it can take to move data from one process to another or to
write and read data to and from a disk, it is often advantageous to arrange the
program so that some work can be done while the messages are in transit. So far,
we have used non-blocking operations to avoid waiting. Here we describe some
details for arranging a program so that computation and I/O can take place
simultaneously.

1.15 Synchronous methods

1.15.1 NULL

The ADIOS NULL method allows users to quickly comment out an ADIOS group.
by changing the transport method to “NULL,” users can test the speed of the
routine by timing the output against no I/0. This is especially useful when
working with asynchronous methods, which take an indeterminate amount of
time. Another useful feature of this [/0 is that it quickly allows users to test out
the system and determine whether bugs are caused by the [/0O system or by other
places in the codes.

1.15.2 POSIX

The simplest method provided in ADIOS just does binary POSIX I/0 operations.
Currently, it does not support shared file writing or reading and has limited
additional functionality. The main purpose for the POSIX I/0 method is to provide
a simple way to migrate a one-file-per-process I/0 routine to ADIOS and to test
the results without introducing any complexity from MPI-10 or other I/0
methods. Performance gains just by using this transport method are likely due to
our aggressive buffering for better streaming performance to storage. The
buffering method writes out files in BP format, which is a compact, self-describing
format.

Additional features may be added to the ADIOS POSIX transport method over
time. a new transport method with a related name, such as POSIX-ASCII, may be
provided to perform I/0 with additional features. The POSIX-ASCII example
would write out a text version of the data formatted nicely according to some
parameters provided in the XML file.

1.15.3 MPI-IO

Many large-scale scientific simulations generate a large amount of data, spanning
thousands of files or datasets. The use of MPI-10 reduces the amount of files and
thus is helpful for data management, storage, and access.

The original MPI-I0 method was developed based on our experiments with
generating the better MPI-10 performance on the ORNL Jaguar machine. Many of
his insights have helped us achieve excellent performance on both the Jaguar XT4
machine and on the other clusters. Some of the key insights we have taken
advantage of include artificially serialized MPI_File_open calls and additional

19

timing delays that can achieve reduced delays due to metadata server (MDS)
conflicts on the attached Lustre storage system.

The adapted code takes full advantage of NxM grouping through the
coordination-communicator. This grouping generates one file per coordination-
communicator with the data stored sequentially based on the process rank within
the communicator. Figure 4 presents in the example of GTC code, 32 processes in
the same Toroidal zone write to one integrated file. Additional serialization of the
MPI_File_open calls is done using this communicator as well because each
process may have a different size data payload. Rank 0 calculates the size that it
will write, calls MPI_File_open, and then sends its size to rank 1. Rank 1 listens for
the offset to start from, adds its calculated size, does an MPI_File_open, and sends
the new offset to rank 2. This continues for all processes within the
communicator. Additional delays for performance based on the number of
processes in the communicator and the projected load on the Lustre MDS can be
used to introduce some additional artificial delays that ultimately reduce the
amount of time the MPI_File_open calls take by reducing the bottleneck at the
MDS. An important fact to be noted is that individual file pointers are retrieved by
MPI_File_open so that each process has its own file pointer for file seek and other
[/0 operations.

1 file per Toroidal zone, 64 files total, N processor ranks

|Rank0 | |Rank 32 ‘ |Rank64 | e o o |Rank N-192 ‘ ‘Rank N-128 | |Rank N-64 |

‘Rank N-191 ‘ ‘Rank N-127 | |Rank N-63 |

s |Rank1 | |Rank 33 ‘ |Rank65 ‘ e o o

)

g—) |Rank2 | |Rank 34 ‘ |Rank 66 ‘ e o o ‘Rank N-190 ‘ ‘Rank N-126 | |Rank N-62 |

Q

o

3

(4] []]] ¢ © o [] []]
[]]] ¢ o o° [] []]

[]]] ¢ ° o |][][]

|Rank31 | |Rank63 ‘ |Rank127 | 4 ’RankN 127 ‘ ’RankNGS | |RankN1

05800 808

Fig. 4. Server-friendly metadata approach: offset the create/open in time.

We built the MPI-I0 transport method, mainly with Lustre in mind because it is
the primary parallel storage service we have available. However, other file -
system -specific tunings are certainly possible and fully planned as part of this
transport method system. For each new file system we encounter, a new
transport method implementation tuned for that file system, and potentially that
platform, can be developed without impacting any of the scientific code.

The MPI-10 transport method for Lustre is the most mature, fully featured, and
well tested. We recommend to anyone creating a new transport method that they

20

study it as a model of full functionality and some of the advantages that can be
made through careful management of the storage resources.

1.15.4 MPI-CIO

MPI-I0 defines a set of portable programming interfaces that enable multiple
processes to have concurrent access to shared files [1]. It is often used to store
and retrieve structured data in their canonical order. The interfaces are split into
two types: collective 1/0 and independent 1/0. Collective functions require all
processes to participate. Independent 1/0, in contrast, requires no process
synchronization.

Collective 1/0 enables process collaboration to rearrange 1/0 requests for better
performance [2,3]. The collective /0 method in ADIOS first defines MPI fileviews
for all processes based on the data partitioning information provided in the XML
configuration file. ADIOS also generates MPI-I0 hints, such as data sieving and [/0
aggregators, based on the access pattern and underlying file system
configuration. The hints are supplied to the MPI-IO library for further
performance enhancement. The syntax to describe the data-partitioning pattern
in the XML file uses the <global-bounds dimensions offsets> tag, which defines
the global array size and the offsets of local subarrays in the global space.

The global-bounds element contains one or more nested var elements, each
specifying a local array that exists within the described dimensions and offset.
Multiple global-bounds elements are permitted, and strictly local arrays can be
specified outside the context of the global-bounds element.

As with other data elements, each of the attributes of the global-bounds element
is provided by the adios_write call. The dimensions attribute is specified by all
participating processes and defines how big the total global space is. This value
must agree for all nodes. The offset attribute specifies the offset into this global
space to which the local values are addressed. The actual size of the local element
is specified in the nested var element(s). For example, if the global bounds
dimension were 50 and the offset were 10, then the var(s) nested within the
global-bounds would all be declared in a global array of 50 elements with each
local array starting at an offset of 10 from the start of the array. If more than one
var is nested within the global-bounds, they share the declaration of the bounds
but are treated individually and independently for data storage purposes.

Currently this method is unfinished at the time of writing, but will be released in
the next minor release in Q1 2009.

1.15.5 PHDF5

HDF5, as a hierarchical File structure, has been widely adopted for data storage in
various scientific research fields. Parallel HDF5 (PHdF5) provides a series of APIs
to perform the I/0O operations in parallel from multiple processors, which
dramatically improves the 1/0 performance of the sequential approach to
read/write an HDF5 file. In order to make the difference in transport methods

21

and file formats transparent to the end users, we provide a mechanism that
write/read an HDF5 file with the same schema by keeping the same common
adios routines with only one entry change in the XML file. this method provides
users with the capability to write out exactly the same HDF5 files as those
generated by their original PHDF5 routines. Doing so allows for the same analysis
tool chain to analyze the data.

Currently, HDF5 supports two I/O modes: independent and Collective read or
write, which can use either the MPI or the POSIX driver by specifying the dataset
transfer property list in H5Dwrite function calls. In this release, only the MPI
driver is supported in ADIOS; later on, both 1/0 drivers will be supported by
changing the attribute information for PHDF5 method elements in XML.

1.15.6 PNetCDF
Another widely accepted standard file format is called NetCDF, which is the most

frequently used file format in the climate and weather research communities. In
ADIOS 2.0, this method will be supported.

1.15.7 Other methods

ADIOS provides an easy plug-in mechanism for users or developers to design
their own transport method. A step-by-step instruction for inserting a new 1/0
method is given in Sect. 14.2. Users are likely to choose the best method from
among the supported or customized methods for the running their platforms,
thus avoiding the need to verify their source codes due to the switching of 1/0
methods.

1.16 Asynchronous methods

1.16.1 MPI-AIO

The initial implementation of the asynchronous MPI-I0 method (MPI-AIO) is
patterned after the MPI-I0 method. Scheduled metadata commands are
performed with the same serialization of MPI_Open calls as given in Fig. 4.

The degree of 1/0 synchronicity depends on several factors. First, the ADIOS
library must be built with versions of MPI that are built with asynchronous 1/0
support through the MPI_File_iwrite, MPI_File_iread, and MPI_Wait calls. If
asynchronous I/0 is not available, the calls revert to synchronous (read blocking)
behavior identical to the MPI-I0 method described in the previous section.

Another important factor is the amount of available ADIOS buffer space. In the
MPI-10 method, data are transported and ADIOS buffer allocation is reclaimed for
subsequent use with calls to adios_close (). In the MPI-AIO method, the “close”
process can be deferred until buffer allocation is needed for new data. However, if
the buffer allocation is exceeded, the data must be synchronously transported
before the application can proceed.

The deferral of data transport is key to effectively scheduling asynchronous 1/0
with a computation (to be implemented in version 2.0). In ADIOS version 1.0, the

22

application explicitly signals that data transport must be complete with
intelligent placement of the adios_close () call to indicate when I/O must be
complete. Later versions of ADIOS will perform [/O between
adios_begin_calculation and adios_end_calculation calls, and complete 1/0 on
adios_end_iteration calls.

This method will be available during Q1 2009.

1.16.2 DataTap

DataTap is an asynchronous data transport method built to ensure very high
levels of scalability through server-directed 1/0 [7,8]. It is implemented as a
request-read service designed to bridge the order-of-magnitude difference
between available memories on the 1/0 partition compared with the compute
partition. We assume the existence of a large number of compute nodes
producing data (we refer to them as “DataTap clients”) and a smaller number of
[/0 nodes receiving the data (we refer to them as “DataTap servers”) (see Fig. 5).

Compute Node

Performance

o buff DataTap Server
Application e\
Manager /}tream Manager
DMA
ADIOS ' Write Disk

Request—

output
buffe
DataTap Client -l\ Receiv:r%i DataTap i\g;l}th
\hi;:—a/
Data

RDMA

buffer Read

Upon application request, the compute node marks up the data in PBIO [9] format
and issues a request for a data transfer to the server. The server queues the
request until sufficient receive buffer space is available. The major cost associated
with setting up the transfer is the cost of allocating the data buffer and copying
the data. However, this overhead is small enough to have little impact on the
overall application runtime. When the server has sufficient buffer space, a remote
direct memory access (RDMA) read request is issued to the client to read the
remote data into a local buffer. The data are then written out to disk or
transmitted over the network as input for further processing in the I/0 Graph.

We used the Gyrokinetic Turbulence Code (GTC) as an experimental tested for
the DataTap transport. GTC is a particle-in-cell code for simulating fusion within
tokamaks, and it is able to scale to multiple thousands of processors. In its default
/0 pattern, the dominant /0 cost is from each processor writing out the local
particle array into a file. Asynchronous I/0 reduces this cost to just a local
memory copy, thereby reducing the overhead of I/0 in the application.

1.16.3 Decoupled and Asynchronous Remote Transfers (DART)

DART is an asynchronous I/0 transfer method within ADIOS that enables low-
overhead, high-throughput data extraction from a running simulation. DART
consists of two main components: (1) a DARTClient module and (2) a

23

DARTServer module. Internally, the DART system uses RDMA to implement
communication, coordination, and data transport between the DARTClient and
the DARTServer modules.

The DARTClient module is a light library that implements the asynchronous 1/0
APIL. It integrates with the ADIOS layer by extending the generic ADIOS data
transport hooks. It uses the ADIOS layer features to collect and encode the data
written by the application into a local transport buffer. Once it has collected data
from a simulation, DARTClient notifies the DARTServer through a coordination
channel that it has data available to send out. DARTClient then returns and allows
the application to continue its computations while data are asynchronously
extracted by the DARTServer.

The DARTServer module is a stand-alone service that runs independently of the
simulation. It typically runs on dedicated I/0 nodes, and transfers data from the
DARTClients and to remote sites (e.g., a remote a storage system such as the
Luster file system. One instance of the DARTServer can service multiple
DARTClients instances in parallel. Further, the server can run in cooperative
mode (i.e., multiple instances of the server cooperate to service the clients in
parallel and to balance load). The DARTServer receives notification messages
from the clients, schedules the requests, and initiates the data transfers from the
clients in parallel. The server schedules and prioritizes the data transfers while
the simulation is computing in order to overlap data transfers with computations,
to maximize data throughput, and to minimize the overhead on the simulation.

Currently this module will not be released in ADIOS 1.0.

24

BP file format

1.17 Introduction

This chapter describes the file structure of BP, which is the ADIOS native binary
file format, to aid in understanding ADIOS performance issues and how files
convert from BP files to other scientific file formats, such as netCDF and HDF5.

To avoid the file size limitation of 2 gigabytes by using a signed 32-bit offset
within its internal structure, BP format uses an unsigned 64-bit datatype as the
file offset. Therefore, it is possible to write BP files that exceed 2 gigabytes on
platforms that have large file support.

By adapting ADIOS read routines based on the endianness indication in the file
footer, BP files can be easily portable across different machines (e.g., between the
Cray-XT4 and BlueGene).

To aid in data selection, we have a low-overhead concept of data characteristics
to provide an efficient, inexpensive set of attributes that can be used to identify
data sets without analyzing large data content.

As shown in Fig. 6, the BP format comprises a series of process groups and the file
footer. The remainder of this chapter describes each component in detail and
helps the user to better understand (1) why BP is a self -describing and metadata-
rich file format and (2) why it can achieve high 1/0 performance on different
machine infrastructures.

Fr=—======-=-= 1" Start of file

1 1
1 1
1 Process groups 1
1 1

Process groups index

Indices
Vars index

footer

Attributes index

offset of pgs idx
offset of vars index
offset of atts index

version

End of file

Fig. 6. BP file structure.

1.18 Footer

One known limitation of the NetCDF format is that the file contents are stored in a
header that is exactly big enough for the information provided at file creation.
Any changes to the length of that data will require moving data. To avoid this
cost, we choose to employ a foot index instead. We place our version identifier

25

and the offset to the beginning of the index as the last few bytes of our file,
making it simple to find the index information and to add new and different data
to our files without affecting any data already written.

1.18.1 Version

We reserve 4 bytes for the file version, in which the highest bit indicates
endianness. Because ADIOS uses a fixed-size type for data, there is no need to
store type size information in the footer.

1.18.2 Offsets of indices

In BP format, we store three 8-byte file offsets right before the version word,
which allows users or developers to quickly seek any of the index tables for
process groups, variables, or attributes.

1.18.3 Indices

1.18.3.1 Characteristics

Before we dive into the structures of the three index tables mentioned earlier,
let’s first take a look what characteristic means in terms of BP file format. To be
able to make a summary inspection of the data to determine whether it contains
the feature of greatest interest, we developed the idea of data characteristics. The
idea of data characteristics is to collect some simple statistical and/or analytical
data during the output operation or later for use in identifying the desired data
sets. Simple statistics like array minimum and maximum values can be collected
nearly for free as part of the I/O operation. Other more complex analytical
measures like standard deviations or specialized measures particular to the
science being performance by require more processing. As part of our BP format,
we store these values not only as part of data payload, but also in our index.

1.18.3.2 PG Index table

As shown in Fig. 7, the process group (PG) index table encompasses the count and
the total length of all the PGs as the first two entries. The rest of the tables contain
a set of information for each PG, which contains the group name information,
process ID, and time index. The Process ID specifies which process a group is
written by. That process will be the rank value in the communicator if the MPI
method is used. Most importantly, there is a file-offset entry for each PG, allowing
a fast skip of the file in the unit of the process group.

26

r—-—=—===-=-=-== |
1 1 Pgs count
! ! —— Process
1 Process groups | gs leng group 1
1 1 Length of group
1
Length of name
Process ID Process
Pgs index Time Index group 2
Offset to pg 1
Length of group | 1
1
Length of name I 1
1
: 1
Vars index Process ID | !
Time Index : 1
1
Offset to pg 2 | 1
: 1
/ Attribute index | :
1
Length of group | :
offset of pgs idx Length of name I 1
offset of vars index Process ID
; Process
offset of atts index Timellndex
- group n
version Offset to pg n

Fig. 7. Group index table.

1.18.3.3 Variables index table

The variables index table is composed of the total count of variables in the BP file,
the size of variables index table, and a list of variable records. Each record
contains the size of the record and the basic metadata to describe the variable. As
shown in Fig. 8, the metadata include the name of the variable, the name of the
group the variable is associated with, the data type of the variable, and a series of
characteristic features. The structure of each characteristic entry contains an
offset value, which is addressed to the certain occurrence of the variable in the BP
file. For instance, if n processes write out the variable “d” per time step, and m
iterations have been completed during the whole simulation, then the variable
will be written (m x n) times in the BP file that is produced. Accordingly, there
will be the same number of elements in the list of characteristics. In this way, we
can quickly retrieve the single dataset for all time steps or any other selection of
time steps. This flexibility and efficiency also apply to a scenario in which a
portion of records needs to be collected from a certain group of processes.

27

Var entry length

Length of name

Var member 1D

Group name

Length of name

Var name

Length of path

Vars counts

Var path

Vars length

datatype

Characteristics count

Characteristics length

Var 1
Var 2
1 .
I i
1
1

Var n

Characteristics [0]

Characteristic id

Offset to payload

min

Max

value

ranks

Dimensions length

Characteristic
_dims [0]

Local dim

Global dim

Local offset

Characteristic
_dims [ranks-1]

Characteristics [cnt-1]

Fig. 8. Vars Index table.

1.18.3.4 Attributes index table
Since an attribute can be considered to be a special type of variable, its index
table in BP format is organized in the same way as a variables index table and

i

Offset to payload

Var 1

Var 1

Var [1]

Pg1l

Pg 2

Pgn

therefore supports the same types of features mentioned in the previous sections.

1.19 Process Groups
One of the major concepts in BP format is what is called “process group” or PG.
The BP file format encompasses a series of PG entries and the BP file footer. Each
process group is the entire self-contained output from a single process and is
written out independently into a contiguous disk space. In that way, we can
enhance parallelism and reduce coordination among processes in the same
communication group. The data diagram in Fig. 9 illustrates the detailed content

in each PG.

28

Host language Fortran(y/n)

Length of name

name

Coordination var member
ID

Length of timestep name

Timestep name

Method ID

Time step (int)

Method params

Process grou; -
group methods count Method [0] 1 length
length
methods length | | | ... ’ Method params
Process group =
header _ | methods list 7L | Method [cnt-1]
Vars count | Length of var
B Var [0]
Vars length 1= Member ID
""" Length of name

List of vars l Var [ent-1] name

Length of path
Attrs count d P Count (ranks)

path Dimensions length Local dim Var id
Attrs length datatype di ions[0 =

B - imensions[0] = Global dim 7 rank
3 Is_dimension (y/n) [| |
List of attrs Attr [0] - - | Localoffset | || time_index
— | Dimensions | dimensions[cnt-1]
characteristics —
‘ | Attr[ent-1] Characteristics count
‘| payload Characteristics length -

Characteristics id

characteristics[0]

Characteristic length

content

characteristics[cnt-1]

Fig. 9. Process group structure.

1.19.1 PG header

1.19.1.1 Unlimited dimension

BP format allows users to define an unlimited dimension, which will be specified
as the time-index in the XML file. Users can define variables having a dimension
with undefined length, for which the variable can grow along that dimension. PG
is a self-contained, independent data structure; the dataset in the local space per
each time step is not reconstructed at the writing operations across the processes
or at time steps. Theoretically, PGs can be appended to infinity; they can be added
one after another no matter how many processes or time steps take place during
the simulation. Thus ADIOS is able to achieve high /0 performance.

1.19.1.2 Transport methods

One of the advantages of organizing output in terms of groups is to categorize all
the variables based on their I/O patterns and logical relationships. It provides
flexibility for each group to choose the optimized transport method according to
the simulation environment and underlying hardware configuration or the
transport methods used for a performance study without even changing the
source code. In PG header structure, each entry in the method list has a method
ID and method parameters, such as system-tuning parameters or underneath
driver selection.

29

1.19.2 Vars list
1.19.2.1 Var header

1.19.2.1.1 Dimensions structure

Internal to bp is sufficient information to recreate any global structure and to
place the local data into the structure. In the case of a global array, each process
writes the size of the global array dimensions, specifies the local offsets into each,
and then writes the local data, noting the size in each dimension. On conversion
to another format, such as HDFS5, this information is used to create hyperslabs for
writing the data into the single, contiguous space. Otherwise, it is just read back
in and used to note where the data came from. In this way, we can enhance
parallelism and reduce coordination. All of our parallel writes occur
independently unless the underlying transport specifically requires collective
operations. Even in those cases, the collective calls are only for a full buffer write
(assuming the transport was written appropriately) unless there is insufficient
buffer space.

As shown in Fig. 9, the dimension structure contains a time index flag, which
indicates whether this variable has an unlimited time dimension. Var_id is used to
retrieve the dimension value if the dimension is defined as variable in the XML
file; otherwise, the rank value is taken as the array dimension.

1.19.2.2 Payload

Basic statistical characteristics give users the advantage for quick data inspection
and analysis. In Fig. 9, redundant information about characteristics is stored
along with variable payload so that if the characteristics part in the file footer gets
corrupted, it can still be recovered quickly. Currently, only simple statistical traits
are saved in the file, but the characteristics structure will be easily expanded or
modified according to the requirements of scientific applications or the analysis
tools.

1.19.3 Attributes list

The layout of the attributes list (see Fig. 10) is very similar to that of the
variables. However, instead of containing dimensional structures and physical
data load, the attribute header has an is_var flag, which indicates either that the
value of the attribute is referenced from a variable by looking up the var_id in the
same group or that it is a static value defined in the XML file.

30

Length of var

Member ID

Length of name

name

Length of path

path

Attr [cnt-1]

is_var(y/n)

Fig. 10. Attribute entry structure.

31

Y

Datatype

Length of value

value

Utilities

1.20 adios_lint

We provide a verification tool, called adios_lint, which comes with ADIOS 1.0. It
can help users to eliminate unnecessary semantic errors and to verify the
integrity of the XML file. Use of adios_lint is very straightforward; enter the
adios_lint command followed by the config file name.

1.21 bpdump
The bpdump utility enables users to examine the contents of a bp file and to
display all the contents or selected variables in the format on the standard output.

It dumps the bp file content, including the indexes for all the process groups,
variables, and attributes, followed by the variables and attributes list of
individual process groups (see Fig. 11).

bpdump [-d var|--dump var] <filename>

Process Groups Index:
Group: temperature
Process ID: 0
Time Name:
Time: 1
Offset in File: 0

Vars Index:

Var (Group) [ID]: /NX (temperature) [1]
Datatype: integer
Vars Characteristics: 20

Offset(46) Value(10)

Var (Group) [ID]: /size (temperature) [2]
Datatype: integer
Vars Characteristics: 20
Offset(77) Value(20)

Var (Group) [ID]: /rank (temperature) [3]
Datatype: integer
Vars Characteristics: 20
Offset(110) Value(0)

Var (Group) [ID]: /temperature (temperature) [4]
Datatype: double
Vars Characteristics: 20

32

Offset(143) Min(1.000000e-01) Max(9.100000e+00)
Dims (l:g:0): (1:20:0,10:10:0)

Attributes Index:

Attribute (Group) [ID]: /recorded-date (temperature) [5]
Datatype: string
Attribute Characteristics: 20
Offset(363) Value(Sep-19-2008)

Fig. 11. bpdump snapshot.

33

Converters

To make BP files compatible with the popular file formats, we provide a series of
converters to convert BP files to HDF5, NETCDF, or ASCIIL As long as users give
the required schema via the configuration file, the different converter tools

currently in ADIOS have the features to translate intermediate BP files to the
expected HDF5, NetCDF, or ASCII formats.

1.22 bp2h5

This converter, as indicated by its name, can convert BP files into HDF5 files.
Therefore, the same postprocessing tools can be used to analyze or visualize the
converted HDF?5 files, which have the same data schema as the original ones. The
converter can match the row-based or column-based memory layout for datasets
inside the file based on which language the source codes are written in. If the
XML file specifies global-bounds information, the individual sub-blocks of the
dataset from different process groups will be merged into one global the dataset
in HDF file.

1.23 bp2ncd

The bp2ncd converter is used to translate bp files into NetCDF files. In Chap. 5, we
describe the time-index as an attribute for adios-group. If the variable is time-
based, one of its dimensions needs to be specified by this time-index variable,
which is defined as an unlimited dimension in the file into which it is to be
converted. a NetCDF dimension has a name and a length. If the constant value is
declared as a dimension value, the dimension in NetCDF will be named
varname_n, in which varname is the name of the variable and n is the nth
dimension for that variable. To make the name for the dimension value more
meaningful, the users can also declare the dimension value as an attribute whose
name can be picked up by the converter and used as the dimension name.

Based on the given global bounds information in a BP file, the converter can also
reconstruct the individual pieces from each process group and create the global
space array in NetCDF. A final word about editing the XML file: the name string
can contain only letters, numbers or underscores (“_"). Therefore, the attribute or
variable name should conform to this rule.

1.24 bp2ascii

Sometimes, scientists want one variable with all the time steps or want to extract
two variables at the same time steps to and store the resulting data in ASCII
format. The Bp2ascii converter tool allows users to accomplish those tasks.

Bp2ascii bp_filename -v x1 ... xn [-¢/-r] -t m,n
-v - specify the variables need to be printed out in ASCII file

-c —print variable values for all the time steps in column

34

-r - print variable values for all the time steps in row

-t — print variable values for time step m to n, if not defined, all the time steps will
be printed out.

1.25 Parallel Converter Tools

Currently, all of the converters mentioned above can only sequentially parse bp
files. We will work on developing parallel versions of all of the converters for
improved performance of ADIOS 2.0 . As a result, the extra conversion cost to
translate bp into the expected file format can be unnoticeable compared with the
file transfer time.

35

Group read/write process

In ADIOS 1.0, we provide a python script, which takes a configuration file name as
an input argument and produces a series of preprocessing files corresponding to
the individual adios-group in the XML file. Depending on which language (C or
FORTRAN) is specified in XML, the python script either generates files
gwrite_groupname.ch and gread_groupname.ch for C or files with extension .th
for Fortran. These files contain the size calculation for the group and
automatically print adios_write calls for all the variables defined inside adios-
group. Using only one “#include filename.ch/filename.fh” statement in source
code between the pair of adios_open and adios_close.

Users either type the following command line or incorporate it into Makefie:

python gpp.py <config fname>

1.26 Gwrite/gread/read
Below are a few example of the mapping from var element to adios_write/read:

In adios-group “weather”, we have a variable declared in the following forms:

1) <var name="temperature” gwrite="t" gread="t_read” type="adios_double”
dimensions="NX"/>

When the python command is executed, two files are produced,
gwrite_weather.ch and gread_weather.ch. The gwrite_weather.ch command
contains

adios write (adios handle, “temperature”, t);

while gread_weather.ch contains

adios read (adios handle, “temperature”, t read).

2) <var name="temperature” gwrite="t” gread="t_read” type="adios_double”
dimensions="NX" read="no” />

In this case, only the adios_write statement is generated in gwrite_weather.ch.
The adios_read statement is not generated because the value of attribute read is
set to no.

3) <var name="temperature” gread="t_read” type="adios_double”
dimensions="NX" />

adios write (adios handle, “temperature”, temperature)

adios read (adios handle, “temperature”, t read).

4) <var name="temperature” gwrite="t” type="adios_double” dimensions="NX"

/>

36

adios write (adios handle, “temperature”, t)

adios read (adios handle, “temperature”, temperature)

1.27 Add conditional expression

Sometimes, the adios_write routines are not perfectly written out one after
another. There might be some conditional expressions or loop statements. The
following example will show you how to address this type of issue via XML
editing.

<gwrite src="if (rank == 0) {"/>

<var name="temperature” gwrite="t" gread="t_read” type="adios_double”
dimensions="NX" read="no” />

<gwrite src="}"/>

Rerun the python command; the following statements will be generated in
gwrite_weather.ch,

if (mype==0) {
adios write (adios handle, “temperature”, t)
}

gread_weather.ch has same condition expression added.

1.28 Dependency in Makefile

Since we include the header files in the source, the users need to include the
header files as a part of dependency rules in the Makefile.

37

C Programming with ADIOS

This chapter focuses on how to integrate ADIOS into the users’ source code in C
and how to write into separate files or a shared file from multiple processes in the
same communication domain.

1.29 Non-ADIOS Program

The programming example shown in Fig. 12 illustrates how to write a double-
precision array t and a double-precision array with size of NX into a file called
“test.bp,” which is organized in our native tagged binary file format—BP (see
Chap. 5). This file format allows users to include rich metadata associated with a
block of binary data as well the indexing mechanism for different blocks of data.
(See Fig. 3 for the corresponding XML configuration file required by the
program.)

#include <stdio.h>

#include "mpi.h"

#include "adios.h"

int main (int argc, char ** argv)

{
char filename [256];
int rank;
int NX =10;
double t[NX];
FILE * fp;

MPIL_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
sprintf (filename, "restart_%>5.5d.bp", rank);

fp = open (filename, "w");

fwrite (&NX, sizeof(int), 1, fp);

fwrite (t, sizeof(double), NX, fp);

fclose (fp);

MPI_Finalize ();
return 0;

1.30 Construct an XML File

From the example routine, we know that the program is designed to write a file
for each process. There is a double-precision one-dimensional array called “t”.
Therefore, our configuration file is constructed as shown in Fig. 13.

38

/* config.xml*/
<adios-config host-language="C">
<adios-group name="temperature" coordination-communicator="comm">
<var name="NX" type="integer" />
<var name="temperature" gwrite="t" type="double" dimensions="NX"/>
<attribute name="recorded-date" path="/" value="Sep-19-2008"
type="string" />
</adios-group>

<method group="temperature" method="MPI" />
<buffer size-MB="1" allocate-time="now" />

</adios-config>

Fig. 13. Example config.xml file.

1.31 Generate .ch file (s)

The adios_group_size function and a set of adios_write functions can be
automatically generated in gwrite_temperature.ch file by using the following
python command (see Chap. 10):

python gpp.py config.xml
The generated gwrite_temperature.ch file is given in Fig. 14.

/* gwrite_temperature.ch */
adios_groupsize =4 \
+ 8 * (NX);
adios_group_size (adios_handle, adios_groupsize, &adios_totalsize, &comm);
adios_write (adios_handle, "NX", &NX);
adios_write (adios_handle, "temperature”, t);

Fig. 14. Example gwrite_temperature.ch file.

1.32 Write to Separate Files for each Process (P writers, P files)

For our first program, we will simply translate the program of Fig 14 so that all of
the 1/O operations are done with ADIOS routines. We do this to show how
familiar and easy I/0 operations look in ADIOS. This program has the same
advantages and disadvantages as the preceding version. Consider the differences
between programs shown in Figs. 15 and 16 one by one; there are only four.

39

1.32.1 POSIX
We show how to use the POSIX method to write out separate files for each
processor in Fig. 15.

/*write Separate file for each process by using POSIX*/
#include <stdio.h>
#include "mpi.h"
#include "adios.h"
int main (int argc, char ** argv)
{
char filename [256];
int rank;
int NX =10;
double t[NX];

/* ADIOS variables declarations for matching gwrite_temperature.ch */
int adios_err;

uint64_t adios_groupsize, adios_totalsize;

int64_t adios_handle;

MPI_ Comm * comm = MPI_COMM _SELF;

MPIL_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

sprintf (filename, "restart_%>5.5d.bp", rank);

adios_init ("config.xml");

adios_open (&adios_handle, "temperature”, filename, "w");
#include "gwrite_temperature.ch”

adios_close (adios_handle);

adios_finalize (rank);

MPI_Finalize ();

return 0;

Fig. 15. Example adios P2P program.

1.32.2 MPI-IO

Based on the same group description in the configure file and the header file (.ch)
generated by python script, we can switch among different transport methods
without changing or recompiling the source code.

One entry change in the XML file can switch from POSIX to MPI-10 when the
source code is recompiled:
<method group="temperature” method="MPI" />

40

MPI communicator is passed as an argument of adios_group_size call in
"gwrite_temperature.ch". Because it is defined as MPI_COMM_SELF, every process
writes out its own file.

There are several ways to verify the binary results. We can either choose bpdump
to display the content of the file or use one of the converters (bp2ncd, bp2h5, or
bp2ascii), to produce the user’s preferred file format (NetCDF, HDF5 or ASCI],
respectively) and use its dump utility to output the content in the standard
output.

1.33 Writing to Shared Files (P writers, N files)

As the number of processes increases to 10,000, the amount of files will increase
by the same magnitude if we use the basis P to P method. All the files will be
difficult to manage; the independent POSIX 1/0 operations will probably give the
best performance. Now we will address a scenario in which multiple processes
write to N files. In the following example (Fig. 16), we write out only two files
with P processes. All the even-ranked processes write to a shared file while the
odd-ranked processes write to another file.

#include <stdio.h>

#include "mpi.h"

#include "adios.h"

int main (int argc, char ** argv)

{
char filename [256];
int rank, size;
int NX =10;

double t[NX];

/* ADIOS variables declarations for matching gwrite_temperature.ch */
int adios_err;

uint64_t adios_groupsize, adios_totalsize;

int64_t adios_handle;

MPI_Comm comm;

/*

int color, key;

MPIL_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

/* MPI_Comm_split partitions the world group into two disjointed subgroups,
* the processes are ranked in terms of the argument key
* a new communicator comm is returned for this specific grid configuration

*/

color = rank % 2;

41

key =rank / 2;
MPI_Comm_split (MPI_COMM_WORLD, color, key, &comm);

/* every P/2 processes write into the same file

* there are 2 files generated.

*

/

sprintf (filename, "restart_%>5.5d.bp", color);
adios_init ("config.xml");
adios_open (&adios_handle, "temperature”, filename, "w");
#include "gwrite_temperature.ch”
adios_close (adios_handle);
adios_finalize (rank);
MPI_Finalize ();
return 0;

Fig. 16. Example ADIOS P2N program.

The reconstructed MPI communicator comm is passed as an argument of the
adios_group_size call in "gwrite_temperature.ch". Therefore, in this example, each
file is written by the processes in the same communication domain.

There is no need to change the XML file in this case because we are still using the
MPI method.

1.34 Writing to Shared Files with Collective I/0O
If users prefer to use the MPI collective /0 rather than an independent 1/0, all

that is necessary is to change the value of the attribute “method” to MPI-CIO in
XML, and the results will be generated by the MPI-CIO method.

<method group="temperature” method="MPI-CIO" />

1.35 Global Arrays

If each process writes out a subarray that belongs to the same global space,
ADIOS provides the way to write out global information and to reconstruct it into
a whole global array in HDF5 or NetCDF file when using our converters. Figures

17-19 show how to write global arrays. Figure 17 is an example of how to edit an
XML file.

/* config.xml*/
<adios-config host-language="C">
<adios-group name="temperature" coordination-communicator="comm">
<var name="NX" type="integer" />
<var name="size" type="integer" />
<var name="key" type="integer" />

42

<global-bounds dimensions="size,NX" offsets="key,0">
<var name="temperature" gwrite="t" type="double" dimensions="1,NX" />
</global-bounds>
<attribute name="recorded-date" path="/" value="Sep-19-2008"
type="string" />
</adios-group>
<method group="temperature" method="MPI" />
<buffer size-MB="1" allocate-time="now" />
</adios-config>

Fig. 17. Example of how to edit an XML file.

Because the XML configuration has been modified, we need to rerun the python
command to generate the corresponding header file (see Fig. 18).

/* gwrite_temperature.ch */
adios_groupsize =4 \
+4\
+4\
+8* (1) * (NX);
adios_group_size (adios_handle, adios_groupsize, &adios_totalsize, &comm);
adios_write (adios_handle, "NX", &NX);
adios_write (adios_handle, "size", &size);
adios_write (adios_handle, "rank", &rank);
adios_write (adios_handle, "temperature”, t);

Fig. 18. Example of how to edit a python script to generate the header script.

Having edited the XML file and the python script, we can run the code and convert
the output to verify the results. For instance, we can use the program
demonstrated in Sect. 10.7 to generate new bp files. To verify the resulting bp file
with correct global information, the bp2ncd is used to convert the bp file to an
NetCDF file. Figure 19 is the result for restart.nc.

netcdf restart { // format variant: 64bit
dimensions:

NX=10;

size =20 ;

rank=1;
variables:

double temperature(size, NX) ;

43

// global attributes:
:recorded-date = "Sep-19-2008";
data:

temperature =
0.1,1.1,2.1,3.1,4.1,5.1,6.1,7.1,8.1,9.1,

0.1,20.1,40.1, 60.1, 80.1, 100.1, 120.1, 140.1, 160.1, 180.1 ;
}

Fig. 19. Converted results file.

1.36 Writing Time-Index into a Variable

The time-index allows user to define a variable having a dimension with an
undefined length, along which the variable can grow. Say users want to write out
temperature after a certain number of iterations (Fig. 20). First, we add the “time-
index” attribute in adios-group called “time.” Next, we find the variable
temperature in the adios-group and add “time” as an extra dimension for it; the
record number for that variable will be stored every time it gets written out.

/* config.xml*/
<adios-config host-language="C">

<adios-group name="temperature" coordination-communicator="comm" time-
index="time"”>

<var name="NX" type="integer" />

<var name="size" type="integer" />

<var name="key" type="integer" />

<global-bounds dimensions="size,NX" offsets="key,0">

<var name="temperature" gwrite="t" type="double" dimensions="1,NX,

time"/>

</global-bounds>

<attribute name="recorded-date" path="/" value="Sep-19-2008"
type="string" />
</adios-group>
<method group="temperature" method="MPI" />
<buffer size-MB="1" allocate-time="now" />
</adios-config>

Fig. 20. Example of a file with a time variable added.

44

The advantage of ADIOS is that the user does not need change and recompile the
code; the variable address and the size of the variable have not changed. The user
submits the job and generates the new bp files.

To verify the results, the users can use bpdump to examine the bp file content or
use the bp2ncd converter to view the content as an NetCDF File.

1.37 Reading the File

Now let’s move to examples of how to read the data from BP or other files.
Assuming that we still use the same configure file shown in Fig. 13, the following
steps illustrate how to easily change the code and xml file to read a variable.

1. add another variable adios_buf_size specifying the size for read.

“w_n

2. call adios_open with “r” (read only) mode.

3. Insert #include “gread_temperature.ch”
4. Rerun the gpp.py and generate the file gread_temperature.ch

Figure 21 shows C routines integrated with ADIOS APIs.

/*write Separate file for each process by using POSIX*/
#include <stdio.h>

#include "mpi.h"

#include "adios.h"

int main (int argc, char ** argv)

{
char filename [256];
int rank;
int NX =10;

double t[NX];

/* ADIOS variables declarations for matching gread_temperature.ch */
int adios_err;

uint64_t adios_groupsize, adios_totalsize, adios_buf_size;

int64_t adios_handle;

MPI_ Comm * comm = MPI_COMM _SELF;

MPIL_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

sprintf (filename, "restart_%>5.5d.bp", rank);

adios_init ("config.xml");

adios_open (&adios_handle, "temperature”, filename, "r");
#include "gread_temperature.ch”

45

adios_close (adios_handle);
adios_finalize (rank);
MPI_Finalize ();

return 0;

Fig. 21. Example of C routines integrated with ADIOS APIs for gread_temperature.ch.

The generated gread_temperature.ch file is given in Fig. 22.

/* gread_temperature.ch */

adios_group_size (adios_handle, adios_groupsize, &adios_totalsize, &comm);
adios_buf size = 4;

adios_read (adios_handle, "NX", &NX, adios_buf size);

adios_buf size = NX;

adios_read (adios_handle, "temperature", t, adios_buf_size);

Fig. 22. Example of a generated gread_temperature.ch file.

46

Advanced Programming with ADIOS

If the users are more interested in advanced programming and would like to
contribute their efforts to the development or customization of the ADIOS library,
this section will touch on some advanced concepts in ADIOS.

1.38 Asynchronous I/0O Programming Model

Figure 23 shows the basic programming model of how to implement non-
blocking 10.

adios_init ("config.xml")

// do main loop
adios_begin_calculation ()

// do non-communication work
adios_end_calculation ()

// perform restart writ

// do communication work
adios_end_iteration ()

l'end loop

adios_finalize (myproc_id)

47

Developer Manual

1.39 Create New Transport Methods

One of ADIOS’s important features is the componentization of transport methods.
Users can switch among the typical methods that we support or even create their
own methods, which can be easily plugged into our library. The following
sections provide the procedures for adding the new transport method called
“abc” into the ADIOS library. In this version of ADIOS, all the source files are
located in /trunk/src/.

1.39.1 Add the new method macros in adios_transport_hooks.h

The first file users need to examine is adios_transport_hooks.h, which basically
defines all the transport methods and interface functions between detailed
transport implementation and user APIs. In the file, we first find the line that
defines the enumeration type Adios_IO_methods_datatype add the declaration of
method ID ADIOS_METHOD_ABC, and, because we add a new method, update
total number of transport methods ADIOS_METHOD_COUNT from 9 to 10.

1. enum Adios_IO_methods datatype

enum ADIOS_IO_METHOD {
ADIOS_METHOD_UNKNOWN =-2

LADIOS_METHOD_NULL =-1
LADIOS_METHOD_MPI =0
LADIOS_METHOD_PHDF5 =8

€ ADIOS METHOD ABC =9
LADIOS_METHOD_COUNT =9 <& ADIOS METHOD COUNT =10
b

2. Next, we need to declare the transport APIs for method “abc,” including
init/finalize, open/close, should_buffer, and read/write. Similar to the other
methods, we need to add

FORWARD_DECLARE (abc)

3. Then, we add the mapping of the string name “abc” of the new transport
method to the method ID - ADIOS_METHOD_ABC, which has been already defined
in enumeration type Adios_IO_methods_datatype. As the last parameter, “1” here
means the method requires communications, or “0” if not.

MATCH_STRING_TO_METHOD ("abc", ADIOS_.METHOD_ABC, 1)

48

4. Lastly, we add the mapping of the string name needed in the initialization
functions to the method ID, which will be used by adios_transport_struct
variables defined in adios_internals.h.

ASSIGN_FNS (abc, ADIOS_METHOD_ABC)

1.39.2 Create adios_abc.c
In this section, we demonstrate how to implement different transport APIs for
method “abc.” In adios_abc.c, we need to implement at least 11 required routines:

1. “adios_abc_init” allocates the method_data field in adios_method_struct to the
user-defined transport data structure, such as adios_abc_data_struct, and
initializes this data structure. Before the function returns, the initialization status
can be set by statement “adios_abc_initialized = 1.”

2. “adios_abc_open” opens a file if there is only one processor writing to the file.
Otherwise, this function does nothing; instead, we use adios_abc_should_buffer to
coordinate the file open operations.

3. “adios_abc_should_buffer,” called by the “common_adios_group_size” function
in adios.c, needs to include coordination of open operations if multiple processes
are writing to the same file by using the communicator variable passed as
function parameter.

4. “adios_abc_write”, in the case of no buffering or overflow, writes data directly
to disk. Otherwise, it verifies whether the internally recorded memory pointer is
consistent with the vector variable’s address passed in the function parameter
and frees that block of memory if it is not needed any more.

5. “adios_abc_read” associates the internal data structure’s address to the variable
specified in the function parameter.

6. “adios_abc_close” closes the file if no buffering scheme is used. Otherwise, this
function needs extra effort to perform the actual disk writing/reading to/from
the file by one or more processors in the same communicator domain and then
close the file.

7. “adios_abc_finalize” resets the initialization status back to 0 if it has been set to
1 by adios_abc_init.

If you are developing asynchronous methods, the following functions need to be
implemented as well; otherwise you can leave them as empty implementation.

8. adios_abc_get_write_buffer,

9. “adios_abc_end_iteration“ is a tick counter for the 1/0 routines to time how fast
they are emptying the buffers.

49

10. “adios_abc_start_calculation” indicates that it is now an ideal time to do bulk
data transfers because the code will not be performing I/0 for a while.

11. “adios_abc_stop_calculation“ indicates that bulk data transfers should cease
because the code is about to start communicating with other nodes.

The following is One of the most important things that needs to be noted:

fd->shared_buffer = adios_flag_no,

which means that the methods do not need a buffering scheme, such as PHDFS5,
and that data write out occurs immediately once adios_write returns.

If fd->shared_buffer = adios_flag_yes, the users can employ the self-defined
buffering scheme to improve I/0 performance.

Now let’s look at an example of adding an unbuffered POSIX method to ADIOS.
According to the steps described above, we first open the header file --
“adios_transport_hooks.h,” and add the following statements:

* enum ADIOS_IO_METHOD {

ADIOS_METHOD_UNKNOWN =-2
,LADIOS_METHOD_NULL =-1
,LADIOS_METHOD_MPI =0

,LADIOS_METHOD_PROVENANCE =8

// method ID for binary transport method
,ADIOS_METHOD_POSIX_ASCII_NB =9
// total method number
,ADIOS_METHOD_COUNT =10

b
* FORWARD_DECLARE (posix_ascii_nb);
e MATCH_STRING_TO_METHOD ("posix_ascii_nb"
, ADIOS_METHOD_ POSIX_ASCII_NB, 0)
* ASSIGN_FNS (binary, ADIOS_METHOD_ POSIX_ASCII_NB)

Next, we must create adios_posix_ascii_nb,c, which defines all the required
routines listed in Sect. 12.1.2 The blue highlights below mark out the data
structures and required functions that developers need to implement in the

source code.

static int adios_posix_ascii_nb_initialized = 0;

50

struct adios_POSIX_ASCII_UNBUFFERED_data_struct
{

FILE *f;

uint64 _t file_size;

b

void adios_ posix_ascii_nb _init (const char *parameters
, struct adios_method_struct * method)

{

struct adios_POSIX_ASCII_UNBUFFERED_data_struct * md;

if ('adios_posix_ascii_nb_initialized)

{

adios_posix_ascii_nb_initialized = 1;
}
method->method_data = malloc (
sizeof(struct adios_POSIX_ASCII_UNBUFFERED_data_struct)
);
md = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)
method->method_data;
md->f=0;
md->file_size = 0;

}

int adios_ posix_ascii_nb _open (struct adios_file_struct * fd
, struct adios_method_struct * method)
{
char * name;
struct adios_POSIX_ASCII_UNBUFFERED_data_struct * p;
struct stat s;
p = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)
method->method_data;
name = malloc (strlen (method->base_path) + strlen (fd->name) + 1);
sprintf (name, "%s%s", method->base_path, fd->name);
if (stat (name, &s) == 0)
p->file_size = s.st_size;
switch (fd->mode)

{

case adios_mode_read:
{
p->f = fopen (name, "r");
if (p->f<=0)
{
fprintf (stderr, "ADIOS POSIX ASCII UNBUFFERED: "
"file not found: %s\n", f{d->name);
free (name);

51

return 0;

}
break;

}

case adios_mode_write:
{
p->f = fopen (name, "w");
if (p->f<=0)
{
fprintf (stderr, "adios_posix_ascii_nb_open "
"failed for base_path %s, name %s\n"
,method->base_path, fd->name
);
free (name);
return 0;

}
break;

}

case adios_mode_append:
{
int old_file = 1;
p->f = fopen (name, "a");
if (p->f<=0)
{
fprintf (stderr, "adios_posix_ascii_nb_open"
" failed for base_path %s, name %s\n"
,method->base_path, fd->name
);
free (name);
return 0;

}
break;

}
default:

{
fprintf (stderr, "Unknown file mode: %d\n", fd->mode);
free (name);
return 0;

}
}

free (name);
return 0;
}
enum ADIOS_FLAG adios_ posix_ascii_nb _should_buffer
(struct adios_file_struct * fd
,struct adios_method_struct * method

52

,void * comm)
{
//in this case, we don’t use shared_buffer
return adios_flag no;
}
void adios_abc_write (struct adios_file_struct * fd
,struct adios_var_struct * v
,void * data
,struct adios_method_struct * method)
{
struct adios_POSIX_ASCII_UNBUFFERED_data_struct * p;
p = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)
method->method_data;
if ('v->dimensions) {
switch (v->type)
{
case adios_byte:
case adios_unsigned_byte:
fprintf (p->f,"%c\n", *((char *)data));
break;
case adios_short:
case adios_integer:
case adios_unsigned_short:
case adios_unsigned_integer:
fprintf (p->f,"%d\n", *((int *)data));
break;
case adios_real:
case adios_double:
case adios_long_double:
fprintf (p->f,"%f\n", *((double *)data));
break;
case adios_string:
fprintf (p->f,"%s\n", (char *)data);
break;
case adios_complex:
fprintf (p->f,"%f+%fi\n", *((float *)data),*((float *)(data+4)));
break;
case adios_double_complex:
fprintf (p->f,"%f+%fi\n", *((double *)data),*((double *)(data+8)));

break;
default:
break;
}
}
else
{

53

uint64_t j;
int element_size = adios_get_type_size (v->type, v->data);
printf("element_size: %d\n",element_size);
uint64_t var_size = adios_get_var_size (v, fd->group, v->data)/element_size;
switch (v->type)
{
case adios_byte:
case adios_unsigned_byte:
for (j = 0;j < var_size; j++)
fprintf (p->f,"%c ", *((char *)(data+j)));
printf("\n");
break;
case adios_short:
case adios_integer:
case adios_unsigned_short:
case adios_unsigned_integer:
for (j = 0;j < var_size; j++)
fprintf (p->f,"%d ", *((int *)(data+element_size*j)));
printf("\n");
break;
case adios_real:
case adios_double:
case adios_long_double:
for (j = 0;j < var_size; j++)
fprintf (p->f,"%f ", * ((double *)(data+element_size*j)));
printf("\n");
break;
case adios_string:
for (j = 0;j < var_size; j++)
fprintf (p->f,"%s ", (char *)data);
printf("\n");
break;
case adios_complex:
for (j = 0;j < var_size; j++)
fprintf (p->f, "%f+%fi ", *((float *)(data+element_size*j))
J((float *)(data+4+element_size*j))
);
printf("\n");
break;
case adios_double_complex:
for (j = 0;j < var_size; j++)
fprintf (p->f,"%f+%fi ", *((double *)(data+element_size*j))
J¥((double *)(data+element_size*j+8)));
printf("\n");
break;
default:

54

break;

}
}
}

void adios_posix_ascii_nb _get_write_buffer
(struct adios_file_struct * fd
,struct adios_var_struct * v
,uint64_t * size
,void ** buffer
,struct adios_method_struct * method)
{
*puffer = 0;
}

void adios_ posix_ascii_nb _read (struct adios_file_struct * fd
,struct adios_var_struct * v, void * buffer
,uint64_t buffer_size
,struct adios_method_struct * method)

{

v->data = buffer;
v->data_size = buffer_size; }

int adios_posix_ascii_nb _close (struct adios_file_struct * fd
, struct adios_method_struct * method)

{
struct adios_POSIX_ASCII_UNBUFFERED_data_struct * p;

p = (struct adios_POSIX_ASCII_UNBUFFERED_data_struct *)

method->method_data;
if (p->f<=0)
{
fclose (p->f);

}

p->f=0;

p->file_size = 0;

}

void adios_posix_finalize (int mype, struct adios_method_struct * method)

{
if (adios_posix_ascii_nb_initialized)
adios_posix_ascii_nb_initialized = 0;

55

The binary transport method blocks methods for simplicity. Therefore, no special
implementation for the three functions below is necessary and their function
bodies can be left empty:

adios_abc_end_iteration (struct adios_method_struct * method) {}
adios_abc_start_calculation (struct adios_method_struct * method) {}
adios_abc_stop_calculation (struct adios_method_struct * method) {}

Until now, we have implemented the POSIX_ASCII transport method. When users
specify POSIX_ASCII_NB method in xml file, the users’ applications will generate
ASCII files by using common ADIOS APIs. However, in order to achieve better 1/0
performance, a buffering scheme needs to be included into this example.

1.40 Profiling the Application and ADIOS

There are two ways to get profiling information of ADIOS I/0 operations. One
way is for the user to explicitly insert a set of profiling API calls around ADIOS API
calls in the source code. The other way is to link the user code with a renamed
ADIOS library and an ADIOS API wrapper library.

1.40.1 Use profiling API in source code

The profiling library called libadios_timing.a implements a set of profiling API
calls. The user can use these API calls to wrap the ADIOS API calls in the source
code to get profiling information.

The adios-timing.h header file contains the declarations of those profiling
functions.

/*
* initialize profiling
%

* Fortran interface
*/

int init_prof_all_(char *prof_file_name, int prof_file_name_size);

/*
* record open start time for specified group
*

* Fortran interface

*/

void open_start_for_group_(int64_t *gp_prof_handle, char *group_name, int
*cycle, int *gp_name_size);

/*
* record open end time for specified group
%

* Fortran interface

56

*/
void open_end_for_group_(int64_t *gp_prof_handle, int *cycle);

/*
* record write start time for specified group
%

* Fortran interface
*/
void write_start_for_group_(int64_t *gp_prof_handle, int *cycle);

/*
* record write end time for specified group
%

* Fortran interface
*/
void write_end_for_group_(int64_t *gp_prof_handle, int *cycle);

/*
* record close start time for specified group
*

* Fortran interface
*/
void close_start_for_group_(int64_t *gp_prof_handle, int *cycle);

/*
*record close end time for specified group
%

* Fortran interface
*/
void close_end_for_group_(int64_t *gp_prof_handle, int *cycle);

/*
* Report timing info for all groups
%

* Fortran interface
*/

int finalize_prof_all_();

/*
* record start time of a simulation cycle
*

* Fortran interface
*/

void cycle_start_(int *cycle);

57

/*
* record end time of a simulation cycle
*

* Fortran interface
*/

void cycle_end_(int *cycle);

An example of using these functions is given below.

l'initialization ADIOS
CALL adios_init ("config.xml"//char(0))
l'initialize profiling library; the parameter specifies the file where profiling

information is written
CALL init_prof_all("log"//char(0))

CALL MPI_Barrier(toroidal_comm, error)

I'record start time of open

I group_prof_handle is an OUT parameter holding the handle for the group
‘output3d.0’

listep is iteration no.

CALL open_start_for_group(group_prof_handle, "output3d.0"//char(0),istep)
CALL adios_open(adios_handle, "output3d.0"//char(0), “w”//char(0))

' record end time of open
CALL open_end_for_group(group_prof_handle,istep)

I'record start time of write
CALL write_start_for_group(group_prof_handle,istep)

#include "gwrite_output3d.0.fh"

'record end time of write
CALL write_end_for_group(group_prof_handle,istep)

I'record start time of close
CALL cose_start_for_group(group_prof_handle,istep)

CALL adios_close(adios_handle,adios_err)

'record end time of close
CALL close_end_for_group(group_prof_handle,istep)

58

CALL adios_finalize (myid)
I finalize; profiling information are gathered and min/max/mean/var are
calculated for each 10 dump

CALL finalize_prof()

CALL MPI_FINALIZE(error)

When the code is run, profiling information will be saved to the file ”./log”
(specified in init_prof_all ()). Below is an example.

Fri Aug 22 15:42:04 EDT 2008
1/0 Timing results

Operations min max mean var

cycle no 3

io count 0

Open 0.107671 0.108245 0.108032 0.000124

Open start : 1219434228.866144 1219434230.775268 1219434229.748614 0.588501
Open end 1219434228.974225 1219434230.883335 1219434229.856646 0.588486
Write 0.000170 0.000190 0.000179 0.000005

Write start : 1219434228.974226 1219434230.883336 1219434229.856647 0.588486
Writeend : 1219434228.974405 1219434230.883514 1219434229.856826 0.588484
Close 0.001608 0.001743 0.001656 0.000036

Close start : 1219434228.974405 1219434230.883514 1219434229.856826 0.588484
Close end : 1219434228.976040 1219434230.885211 1219434229.858482 0.588489
Total 0.109484 0.110049 0.109868 0.000137

cycle no 6

io count 1

Open 0.000007 0.000011 0.000009 0.000001

Open start : 1219434240.098444 1219434242.007951 1219434240.981075 0.588556
Open end 1219434240.098452 1219434242.007962 1219434240.981083 0.588556
Write 0.000175 0.000196 0.000180 0.000004

Write start : 1219434240.098452 1219434242.007962 1219434240.981083 0.588557
Writeend : 1219434240.098631 1219434242.008158 1219434240.981264 0.588558
Close 0.000947 0.003603 0.001234 0.000466

Close start : 1219434240.098631 1219434242.008158 1219434240.981264 0.588558
Close end : 1219434240.099665 1219434242.009620 1219434240.982498 0.588447
Total 0.001132 0.003789 0.001423 0.000466

The script “post_script.sh” extracts open time, write time, close time, and total
time from the raw profiling results and saves them in separate files: open, write,
close, and total, respectively.

To compile the code, one should link the code with the -ladios_timing -ladios
option.

1.40.2 Use wrapper library
Another way to do profiling is to link the source code with a renamed ADIOS
library and a wrapper library.

The renamed ADIOS library implements “real” ADIOS routines, but all ADIOS
public functions are renamed with a prefix “P”. For example, adios_open() is

59

renamed as Padios_open(). The routine for parsing config.xml file is also changed
to parse extra flags in config.xml file to turn profiling on or off.

The wrapper library implements all adios pubic functions (e.g., adios_open,
adios_write, adios_close) within each function. It calls the “real” function
(Padios_xxx()) and measure the start and end time of the function call.

There is an example wrapper library called libadios_profiling.a. Developers can
implement their own wrapper library to customize the profiling.

To use the wrapper library, the user code should be linked with -ladios_profiling
-ladios. the wrapper library should precede the “real” ADIOS library. There is no
need to put additional profiling API calls in the source code. The user can turn
profiling on or off for each ADIOS group by setting a flag in the config.xml file.

<adios-group name="restart.model" profiling="yes|no">

</adios-group>

60

FAQs

1.41 XML Editing
1.42 Programming
1.43 Debugging

1.44 Method Switching

61

References

62

Appendix

Datatypes used in the ADIOS XML file

size
1 byte, interger*1

2 short, integer*2

Signed type Unsigned type

unsigned byte, unsigned integer*1

unsigned short, unsigned integer*2

4 integer, integer*4, real, real*4, float unsigned integer, unsigned integer*4

8 long, integer*8, real*8, double, long float, complex, complex*8

16 real*16, long double, double complex, complex*16

string
ADIOS APIs List
Function Purpose
adios_init Load the XML configuration file creating

internal representations of the various data
types and defining the methods used for
writing.

adios_finalize

Cleanup anything remaining before exiting
the code

adios_open Prepare a data type for subsequent calls to
write data using the io_handle. Mode is one
of “r” (read), “w” (write) and “a” (append).

adios_close Commit all the write to disk, close the file

and release adios file handle

Adios_group_size

Passing the required buffer size and
communication coordinator to the transport
layer and returned the total size back to the
source code

Adios_write Submit a data element for writing. This does
NOT actually perform the write in buffered
mode. In the overflow case, this call writes to
buffer directly.

Adios_read Submit a buffer space (var) for reading a data

element into. This does NOT actually
perform the read. Actual population of the
buffer space will happen on the call to

63

adios_close

Adios_set_path

Set the HDF5-style path for all variables in a
adios-group. This will reset whatever is
specified in the XML file.

Adios_set_path_var

Set the HDF-5-style path for the specified
var in the group. This will reset whatever is
specified in the XML file.

Adios_get_write_buffer

For the given field, get a buffer that will be
used at the transport level for it of the given
size. If size == 0, then auto calculate the
size based on what is known from the
datatype in the XML file and any provided
additional elements (such as array dimension
elements). To return this buffer, just do a
normal call to adios_write using the same
io_handle, field_ name, and the returned
buffer.

Adios_start_calculation

An indicator that it is now an ideal time to do
bulk data transfers as the code will not be
performing 10 for a while.

Adios_end_ calculation

An indicator that it is no longer a good time
to do bulk data transfers as the code is
about to start doing communication with
other nodes causing possible conflicts

Adios_end_iteration

A tick counter for the IO routines to time
how fast they are emptying the buffers.

64

